منابع مشابه
Ribbon synapses
Why are these synapses special? Because the electrical signals they transmit are not the same as those in other parts of the brain. Conventional synapses convey information arriving as a ‘pulse code’; action potentials lasting a few milliseconds trigger a transient burst of vesicle fusion and the amplitude of the action potential is fixed. But ribbon synapses transmit ‘analogue signals’, such a...
متن کاملFunctional maturation of the exocytotic machinery at gerbil hair cell ribbon synapses
Auditory afferent fibre activity in mammals relies on neurotransmission at hair cell ribbon synapses. Developmental changes in the Ca(2+) sensitivity of the synaptic machinery allow inner hair cells (IHCs), the primary auditory receptors, to encode Ca(2+) action potentials (APs) during pre-hearing stages and graded receptor potentials in adult animals. However, little is known about the time co...
متن کاملgemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses.
L-type Ca2+ channels (LTCCs) drive the bulk of voltage-gated Ca2+ entry in vertebrate inner ear hair cells (HCs) and are essential for mammalian auditory processing. LTCC currents have been implicated in neurotransmitter release at the HC afferent active zone, the ribbon synapse. It is likely that LTCCs play a direct role in vesicle fusion; however, the subcellular localization of the channels ...
متن کاملCholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses
Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a 'critical period' of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent f...
متن کاملMyosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.
The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell and Tissue Research
سال: 2006
ISSN: 0302-766X,1432-0878
DOI: 10.1007/s00441-006-0276-3